snowdeal logo

archives archives

{bio,medical} informatics


Sunday, September 14, 2003

bookmark: connotea :: del.icio.us ::digg ::furl ::reddit ::yahoo::

find related articles. powered by google. The New York Times Getting More From a PC's Spare Time
[requires 'free' registration]

"This fall, distributed computing will take a step forward when its largest project, SETI@home (short for Search for Extraterrestrial Intelligence), introduces a software program named for its University of California origins: Berkeley Open Infrastructure for Network Computing, or Boinc."

"The University of Maryland's Center for Bioinformatics and Computational Biology plans to use Boinc next spring for a project analyzing DNA sequence data to investigate molecular evolution, particularly of bacteria that cause tuberculosis and leprosy. The project provides opportunities for many people to contribute to scientific research in ways other than through their taxes," said Michael P. Cummings, a visiting associate professor at the center."

redux [10.23.02]
find related articles. powered by google. News.Com Stanford gives distributed computing an A

"Scientists at Stanford University have demonstrated tangible proof that scientific experiments can be conducted using thousands of low-end PCs wrangled together into loosely linked networks.

A group of chemists, including Stanford assistant professor Vijay Pande, said they successfully predicted the folding rate of a protein using calculations worked out on a so-called distributed computing network. Their research, conducted last year, was published this week in the science journal Nature."

redux [04.04.01]
find related articles. powered by google. BioMedNet Intel supports online protein project
[requires 'free' registration]

"Intel is providing equipment and software downloads for a project in which volunteers are donating spare home computer cycles to a Stanford University project studying the protein-folding process. The project, Folding@Home, was the first to model successfully a complete protein fold - a task not even achieved by supercomputers."

""We want to increase the value of the PC," said Scott Griffin, Intel's program manager. "The PC is there when people aren't at it, like when they are in meetings. A great thing about this is you get every day users involved in research that they care about. Not only do they get to help out, but they get to help cure these terrible diseases.""

redux [09.23.01]
find related articles. powered by google. Wired News The Little Screensaver That Could

"IBM is spending $100 million building the world's fastest supercomputer to do cutting-edge medical research, but a distributed computing effort running on ordinary PCs may have beaten Big Blue to the punch.

IBM's proposed Blue Gene , a massively parallel supercomputer, in hopes to help diagnose and treat disease by simulating the ultra-complex process of protein folding.

"But Folding@Home , a modest distributed computing project run by Dr. Vijay Pande and a group of graduate students at Stanford University, has already managed to simulate how proteins self-assemble, something that computers, until now, have not been able to do."

redux [10.09.00]
find related articles. powered by google. ACM CrossRoads The SETI@Home Problem

"The SETI@Home problem can be thought of as a special case of the distributed computation verification problem: "given a large amount of computation divided among many computers, how can malicious participating computers be prevented from doing damage?" This is not a new problem. Distributed computation is a venerable research topic, and the idea of "selling spare CPU cycles" has been a science fiction fixture for years."

"The Internet makes it possible for computation to be distributed to many more machines. However, distributing computing around the internet requires developers to consider the possibility of malicious clients."

"The general study of secure multiparty computation has produced much interesting work over the last two decades. Less well studied, unfortunately, are the tools and techniques required to move the theoretical results to the real world. The old dream of massively distributed computations is finally coming true, and yet our tools for building and analysing real systems still seem primitive. The challenge of the next few years will be to bridge this gap."



[ rhetoric ]

Bioinformatics will be at the core of biology in the 21st century. In fields ranging from structural biology to genomics to biomedical imaging, ready access to data and analytical tools are fundamentally changing the way investigators in the life sciences conduct research and approach problems. Complex, computationally intensive biological problems are now being addressed and promise to significantly advance our understanding of biology and medicine. No biological discipline will be unaffected by these technological breakthroughs.

BIOINFORMATICS IN THE 21st CENTURY

[ search ]

[ outbound ]

biospace / genomeweb / bio-it world / scitechdaily / biomedcentral / the panda's thumb /

bioinformatics.org / nodalpoint / flags and lollipops / on genetics / a bioinformatics blog / andrew dalke / the struggling grad student / in the pipeline / gene expression / free association / pharyngula / the personal genome / genetics and public health blog / the medical informatics weblog / linuxmednews / nanodot / complexity digest /

eyeforpharma /

nsu / nyt science / bbc scitech / newshub / biology news net /

informatics review / stanford / bmj info in practice / bmj info in practice /

[ schwag ]

look snazzy and support the site at the same time by buying some snowdeal schwag !

[ et cetera ]

valid xhtml 1.0?

This site designed by
Eric C. Snowdeal III .
© 2000-2005