snowdeal logo

archives archives

{bio,medical} informatics

Wednesday, May 23, 2001

bookmark: connotea :: ::digg ::furl ::reddit ::yahoo::

find related articles. powered by google. The Washington Post Biotech Industry Developing Worldwide Standard for Data
"Worried that modern biology is producing a confused Babel of computer data, a coalition of biotechnology companies and organizations is planning to develop a worldwide standard for storing and retrieving information about the molecular details of life."

"The new coalition, led by the Biotechnology Industry Organization (BIO), a Washington trade group, plans to spend the next year or so creating a detailed specification for biological data. This specification would be available without fee to any company or scientist that wanted to use it to help organize and mine information."

The project has been dubbed the Interoperable Informatics Infrastructure Consortium, or I3C."
redux [02.21.01]
find related articles. powered by google. GenomeWeb Sun Forms Industry-Wide Collaboration to Develop Open Platform for Life Sciences
"Sun Microsystems said Wednesday it would partner with the Biotechnology Industry Organization, the National Cancer Institute, and several commercial bioinformatics vendors to support a collaborative effort to develop an open platform for the life sciences based on Java and XML.

The proposed initiative, temporarily referred to as Life Force or LI4 (Lifescience Informatics Interoperability Infrastructure Initiative) aims to develop an open platform to support data integration and interoperability and to focus the growing number of standards efforts"

"Sun intends to contribute the underlying infrastructure for the open platform, which the company hopes will form the eventual hub for a broad variety of life science computing needs, including bioinformatics, cheminformatics, genomics, proteomics, pharmacogenomics, metabolomics, and clinical informatics."

find related articles. powered by google. SUN Microsystems Sun's Computational Biology SIG
"Sun's vision in Computational Biology is based on three factors: The Sun Platform, Open Standards, and Community Support."

"As part of our efforts to support both open standards and the computational community, as well as to keep the Sun Computational Biology Community up-to-date on Sun products, we have formed a Special Interest Group in Computational Biology."

"Discussion topics for the CB-SIG will come from topics of interest to the membership, as well as Sun's Informatics Advisory Council (IAC), and the open-standards Interoperable Informatics Infrastructure Consortium (I3C), and other initiatives."

redux [03.15.01]
find related articles. powered by google. MIT Technology Review Gene Babel
"Small DNA-laden wafers have transformed biology. Using these DNA chips, geneticists can see which genes are turned on, or expressed, in a cell at a particular time. Such gene expression experiments allow bioscientists to diagnose different diseases, quickly screen thousands of drug candidates for efficacy and safety and even learn the functions of newly discovered genes.

Sharing this information over the Web could lead to an explosion in biological knowledge. But each experiment generates gigabytes of data written in one of several formats, depending on the type of chip used. And with dozens of chips on the market and hundreds of ways to analyze the data, the Web is in danger of becoming a genetic Tower of Babel."

"Companies and academics have begun creating uniform formats for representing gene expression data, designed to work on any computer."

redux [10.21.00]
find related articles. powered by google. Science The Babel of Bioinformatics
[summary - can be viewed for free once registered]
"As more and more genomes are sequenced, it is becoming clear that deciphering the clues latent in these sequences is anything but trivial. In this Techview, Attwood analyzes the current state of the art in sequence-structure-function bioinformatics. She highlights the need for precise terminology, and argues that a holistic view of complex biological systems will be an essential next step for bioinformatics.”

redux [07.25.00]
find related articles. powered by google. The Scientist The Language of Bioinformatics
[requires 'free' registration]
"Once the world had a single language and not too many words, but then clarity deteriorated into clamor. Today in the small but prolific world of bioinformatics, another Tower of Babel is rising up, with the miscommunication due as much to the rapid expansion of information as to basic changes in how it is processed. "Horrible problems" crop up as more information is computed on instead of read by a human researcher, according to Ewan Birney, a group leader in the Ensembl genome annotation project at the European Bioinformatics Institute (EBI) in Cambridge, England.

In the early days of bioinformatics, human-readable data exchange formats such as ASN.1, the format adopted for GenBank by the National Center for Biotechnology Information (NCBI) 10 years ago, were the norm. Easily editable with a text utility, ASN.1's syntactic looseness makes it congenial to the human user, but not to the machine, which likes its inputs defined with dictatorial rigidity."

redux [05.10.00]
find related articles. powered by google. The XML Cover Pages XML and Semantic Transparency
"We may rehearse this fundamental axiom of descriptive markup in terms of a classical SGML polemic: the doubly-delimited information objects in an SGML/XML document are described by markup in a meaningful, self-documenting way through the use of names which are carefully selected by domain experts for element type names, attribute names, and attribute values. This is true of XML in 1998, was true of SGML in 1986, and was true of Brian Reid's Scribe system in 1976. However, of itself, descriptive markup proves to be of limited relevance as a mechanism to enable information interchange at the level of the machine.

As enchanting as it is to contemplate the apparent 'semantic' clarity, flexibility, and extensibility of XML vis-à-vis HTML (e.g., how wonderfully perspicuous XML <bookTitle> seems when compared to HTML <i>), we must reckon with the cold fact that XML does not of itself enable blind interchange or information reuse. XML may help humans predict what information might lie "between the tags" in the case of <trunk> </trunk>, but XML can only help. For an XML processor, <trunk> and <i> and <booktitle> are all equally (and totally) meaningless. Yes, meaningless.

Just like its parent metalanguage (SGML), XML has no formal mechanism to support the declaration of semantic integrity constraints, and XML processors have no means of validating object semantics even if these are declared informally in an XML DTD. XML processors will have no inherent understanding of document object semantics because XML (meta-)markup languages have no predefined application-level processing semantics. XML thus formally governs syntax only - not semantics."

redux [10.13.00]
find related articles. powered by google. Scientific American Hooking up Biologists: Consortia are forming to sort out a common cyberlanguage for life science
"Imagine that your co-worker in the next cubicle has some information you need for a report that's due soon. She e-mails it to you, but the data are from a spreadsheet program, and all you have is a word processor, so there's no possibility of your cutting and pasting it into your document. Instead you have to print it out and type it in all over again. That's roughly the situation facing biologists these days. Although databases of biological information abound--especially in this post-genome-sequencing era--many researchers are like sailors thirsting to death surrounded by an ocean: what they need is all around them, but it's not in a form they can readily use.

To solve the problem, various groups made up of academic scientists and researchers from biotechnology and pharmaceutical companies are coming together to try to devise computer standards for bioinformatics so that biologists can more easily share data and make the most of the glut of information resulting from the Human Genome Project. Their goal is to enable an investigator not only to float seamlessly between the enormous databases of DNA sequences and those of the three-dimensional protein structures encoded by that DNA. They also want a scientist to be able to search the databases more efficiently so that, to use an automobile metaphor, if someone typed in "Camaro," the results would include other cars as well because the system would be smart enough to know that a Camaro is another kind of car."

"Eric Neumann, a member of both the Bio-Ontologies and BioPathways consortia, is a neuroscientist who is now vice president for life science informatics at the consulting firm 3rd Millennium in Cambridge, Mass. (no relation to Millennium Pharmaceuticals). He says Extensible Markup Language (XML) is shaping up to be the standard computer language for bioinformatics."

redux [09.15.00]
find related articles. powered by google. The Rand Corporation : Scaffolding the New Web: Standards and Standards Policy for the Digital Economy The Emerging Challenge of Common Semantics
"With XML has come a proliferation of consortia from every industry imagineable to populate structured material with standard terms (see Appendix B). By one estimate, a new industry consortium is founded every week, perhaps one in four of which can collect serious membership dues. Rising in concert are intermediary groups to provide a consistent dictionary in cyberspace, in which each consortium's words are registered and catalogued.

Having come so far with a syntactic standard, XML, will E-commerce and knowledge organization stall out in semantic confusion?"

"How are semantic standards to come about?"

find related articles. powered by google. SemanticWeb.Org Tutorial on Knowledge Markup Techniques
"There is an increasing demand for formalized knowledge on the Web. Several communities (e.g. in bioinformatics and educational media) are getting ready to offer semiformal or formal Web content. XML-based markup languages provide a 'universal' storage and interchange format for such Web-distributed knowledge representation. This tutorial introduces techniques for knowledge markup: we show how to map AI representations (e.g., logics and frames) to XML (incl. RDF and RDF Schema), discuss how to specify XML DTDs and RDF (Schema) descriptions for various representations, survey existing XML extensions for knowledge bases/ontologies, deal with the acquisition and processing of such representations, and detail selected applications. After the tutorial, participants will have absorbed the theoretical foundation and practical use of knowledge markup and will be able to assess XML applications and extensions for AI. Besides bringing to bear existing AI techniques for a Web-based knowledge markup scenario, the tutorial will identify new AI research directions for further developing this scenario."

[ rhetoric ]

Bioinformatics will be at the core of biology in the 21st century. In fields ranging from structural biology to genomics to biomedical imaging, ready access to data and analytical tools are fundamentally changing the way investigators in the life sciences conduct research and approach problems. Complex, computationally intensive biological problems are now being addressed and promise to significantly advance our understanding of biology and medicine. No biological discipline will be unaffected by these technological breakthroughs.


[ search ]

[ outbound ]

biospace / genomeweb / bio-it world / scitechdaily / biomedcentral / the panda's thumb / / nodalpoint / flags and lollipops / on genetics / a bioinformatics blog / andrew dalke / the struggling grad student / in the pipeline / gene expression / free association / pharyngula / the personal genome / genetics and public health blog / the medical informatics weblog / linuxmednews / nanodot / complexity digest /

eyeforpharma /

nsu / nyt science / bbc scitech / newshub / biology news net /

informatics review / stanford / bmj info in practice / bmj info in practice /

[ schwag ]

look snazzy and support the site at the same time by buying some snowdeal schwag !

[ et cetera ]

valid xhtml 1.0?

This site designed by
Eric C. Snowdeal III .
© 2000-2005